Why do drug resistant strains of Malaria keep emerging from the same piece of jungle?

It’s rare that we stop and reflect on the sheer horror of life just 100 years ago before antibiotics, vaccines and sterile technique were commonplace. In those days, every meal was a game of Russian roulette with E.Coli and every sniffle from a child could spell their imminent demise. The 20th century has been a relatively safe haven from pathogens, but that might all come to an end soon, as drug-resistant diseases become more and more common, thanks to our misuse of medicine.

Over the years, multiple attempts have been made to eradicate Malaria, a disease responsible for millions of deaths. All attempts to date have failed, and malaria still affects an estimated 200 million people each year. This disease is becoming alarmingly adept at developing resistance to whatever drugs are thrown at it. Why is this, and why can all the drug resistant strains of malaria be traced back to the same point of origin – remote jungle regions of western Cambodia?

Continue reading

Advertisements

Gene therapy: finally a viable option

Most genetic diseases are the result of a mutation that means a particular protein is made incorrectly, or not made at all. The idea of gene therapy is to infect cells – just how a virus would – with a small amount of DNA containing a replacement copy of the affected gene which slips into the cell’s genome and starts making the missing protein. The principle is elegant, but many challenges stand between the theory and successful use of gene therapy with real patients. In the last few years a number of advances have been made that have the potential to make gene therapy – something the medical community almost gave up on a decade ago – a powerful tool which could treat or even cure tons of diseases. What could be cooler than using the very tools viruses like HIV have painstakingly evolved to infect us with for our own benefit?

Genes are strings of bases within your DNA that contain the code to make different proteins. If a mutation occurs in the gene and changes the sequence of letters, it can change which protein subunits the cell uses to make the protein. This creates a mutant protein which may not function corrrectly, ot may stop the protein being created at all

That’s right: I made a GIF: Genes are strings of bases within your DNA that contain the code to make different proteins. If a mutation occurs in the gene and changes the sequence of letters, it can change which protein subunits the cell uses to make the protein. This creates a mutant protein which may not function corrrectly, ot may stop the protein being created at all

Continue reading