PRDM9: My Favourite Gene

PRDM9 is my favourite gene. Why? Because it is the strongest driver of speciation identified to date. Thanks to the activity of PRDM9 (and probably some other similar genes we haven’t recognised yet), we live in a world full of awesome metazoans such as hedgehogs, dragonflies, narwhals and axylotils. The gene was tricky to find and it’s function is still not completely understood. Here, I will explain the story of it’s discovery, what we think it does, and why that’s awesome.

Pearson Scott Foresman, donated to the Wikimedia Foundation

PRDM9 was only identified quite recently by scientists trying to understand the process of genetic recombination. [Recap paragraph!]: In my last post I spoke at length about how chromosomes can swap pieces of DNA with one another during cell division. I mostly talked about ‘non-homologous recombination’, where two chromosomes swap non-matching pieces of DNA with one another, one chromosome often completely losing vital genes and it’s counterpart gaining extras. Non-homologous recombination often causes disease, so why haven’t we evolved out of it? The reason is that homologous recombination – where two chromosomes swap like-for-like stretches of DNA – is an integral part of evolution, as it allows species to ‘shuffle’ different variations of genes and see which combinations work best together. The question is, what controls recombination? How does it happen?


Recombination: The process by which two chromosomes swap chunks of DNA with one another

Continue reading

Mutation: Not That Random?

Mutation is usually considered to be a random, uncontrolled process: Mistakes during replication cause random changes to the DNA sequence, which may have positive, negative or neutral effects on the organism’s survivability. Positive changes are sustained, negative mutations die off, neutral mutations just float about. Mounting evidence now suggests that mutation can also happen on a far grander scale than this, that the changes are not always randomly located, and that they may not be mistakes at all.


Evolution is not content with changing a species one base at a time: mutation can actually cause huge genetic changes over just a single generation. Whether these changes are adopted by the whole species (becoming ‘fixed’) is another matter, but it seems that rather than progressing via a gentle trickle of subtle changes, species try out all these small mutations in different combinations, shuffling their genomes about like a deck of cards.

Continue reading